시나브로_개발자 성장기

  • 홈
  • 태그
  • 방명록

cross-entropy 1

[Object Detection] RetinaNet: Focal Loss for Dense Object Detection

RetinaNet은 2017년도 FaceBook AI Research 팀에 의해 개발되었으며 YOLOv3보다 먼저 나온 모델입니다. 당시 One-stage detector는 빠른 detect 속도는 인정받았지만 Faster R-CNN보다 detection 정확도는 떨어진다는 인식이 있었습니다. RetinaNet은 One-stage detector의 빠른 detection 속도의 장점을 가지면서 (SSD나 YOLO보다는 떨어짐) One-stage detector의 detection 성능 저하 문제를 개선시켰습니다. 특히 다른 One-stage detector보다 작은 Object에 대한 detection 성능이 뛰어났는데, 이렇게 detect 성능을 높인 RetinaNet의 2가지 특징이 바로 Focal ..

카테고리 없음 2024.04.16
이전
1
다음
더보기
반응형
프로필사진

  • 🤖 ROBOTICS [Road To Dream] .. (46)
    • Perception (18)
      • OpenCV (4)
      • Object Detection (14)
      • Segmentation (0)
    • Sensor Fusion (1)
      • 칼만 필터 (1)
    • Planner (0)
    • Controller (0)
    • SLAM (0)
      • Probabilistic Robotics (0)
    • ROS1 (0)
    • ROS2 (1)
    • Nav2 (2)
    • 강화학습 (18)
      • 파이썬과 케라스로 배우는 강화학습(스터디) (17)
      • 기타 (1)
    • Linux (1)
    • 🚀Project🚀 (3)
      • Navigation with detecting p.. (3)
    • 알고리즘 (0)
      • 백준 (0)
    • Git (1)

Tag

딥살사, object detection, 정책 이터레이션, YOLOv8, 강화학습, 1-stage detector, Nav2, Realtime Object Detection, 벨만 기대 방정식, YOLO, 벨만 방정식, 벨만 최적 방정식, 파이썬과 케라스로 배우는 강화학습, 그리드월드, One-stage Detector, 허프 변환, openCV, 시간차 예측, 실시간 객체 검출, DQN 알고리즘,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바