시나브로_개발자 성장기

  • 홈
  • 태그
  • 방명록

역전파 알고리즘 1

[강화학습] 09 - 인공신경망

개요 아래와 같은, 다이내믹 프로그래밍의 3가지 한계를 극복하기 위해서 등장한 것이 바로 강화학습이었습니다. 1. 계산 복잡도 2. 차원의 저주 3. 환경에 대한 완벽한 정보가 필요 하지만 저희가 배운 살사나 큐러닝 알고리즘을 생각해봅시다. 환경의 모델을 사용하지는 않았지만, 저희는 각 상태의 큐함수를 테이블 형식으로 저장했습니다. 만약 에이전트에게 주어지는 상태가 정말 다양하고 환경이 시간에 따라서 변할 때, 예를 들어 알파고처럼 바둑을 학습하거나 로봇이 일상생활공간에서 학습한다면 저희는 살사나 큐러닝 알고리즘을 사용할 수 있을까요? 무수히 많은 상태의 정보를 테이블 형식으로 저장하여 계산하는 것이란 불가능한 일입니다. 즉 살사나 큐러닝 알고리즘은 3번의 문제만을 해결하고 계산 복잡도나 차원의 저주 문..

강화학습/파이썬과 케라스로 배우는 강화학습(스터디) 2022.12.30
이전
1
다음
반응형
프로필사진

  • 🤖 ROBOTICS [Road To Dream] .. (46)
    • Perception (18)
      • OpenCV (4)
      • Object Detection (14)
      • Segmentation (0)
    • Sensor Fusion (1)
      • 칼만 필터 (1)
    • Planner (0)
    • Controller (0)
    • SLAM (0)
      • Probabilistic Robotics (0)
    • ROS1 (0)
    • ROS2 (1)
    • Nav2 (2)
    • 강화학습 (18)
      • 파이썬과 케라스로 배우는 강화학습(스터디) (17)
      • 기타 (1)
    • Linux (1)
    • 🚀Project🚀 (3)
      • Navigation with detecting p.. (3)
    • 알고리즘 (0)
      • 백준 (0)
    • Git (1)

Tag

One-stage Detector, 시간차 예측, object detection, 벨만 방정식, openCV, 그리드월드, 벨만 기대 방정식, 강화학습, YOLO, YOLOv8, 딥살사, 허프 변환, 실시간 객체 검출, 정책 이터레이션, 1-stage detector, 파이썬과 케라스로 배우는 강화학습, Realtime Object Detection, 벨만 최적 방정식, DQN 알고리즘, Nav2,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

  2025. 05  
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.