시나브로_개발자 성장기

  • 홈
  • 태그
  • 방명록

가치 기반 강화학습 1

[강화학습] 10 - 딥살사(DeepSARSA)

개요 이전 포스팅에서는 인공신경망의 개념과 학습 방법에 대해서 알아봤습니다. 저희는 이 인공신경망을 이용한 코드를 작성하기 위해서 인공신경망을 구현해놓은 딥러닝 프레임워크를 사용하면 됩니다. 현재 가장 널리 쓰이는 딥러닝 프레임워크는 텐서플로 2.0입니다. 텐서플로 2.0 내부에는 인공신경망을 훨씬 더 직관적이고 효율적인 코드로 설계할 수 있게 도와주는 케라스 모듈이 포함돼 있습니다. 이 책에서는 텐서플로 2.1 버전과 케라스 모듈을 사용하여 코드를 작성하였습니다. 이번 포스팅에서는 새로운 그리드월드 예제에서 인공신경망을 이용하여 최적 정책을 학습하는 딥살사에 대해서 코드 예시와 함께 알아보도록 하겠습니다. 딥살사 새로운 그리드월드 예제는 아래와 같습니다. 이제 장애물인 초록색 삼각형 3개가 한 타임스템..

강화학습/파이썬과 케라스로 배우는 강화학습(스터디) 2023.01.03
이전
1
다음
더보기
반응형
프로필사진

  • 🤖 ROBOTICS [Road To Dream] .. (46)
    • Perception (18)
      • OpenCV (4)
      • Object Detection (14)
      • Segmentation (0)
    • Sensor Fusion (1)
      • 칼만 필터 (1)
    • Planner (0)
    • Controller (0)
    • SLAM (0)
      • Probabilistic Robotics (0)
    • ROS1 (0)
    • ROS2 (1)
    • Nav2 (2)
    • 강화학습 (18)
      • 파이썬과 케라스로 배우는 강화학습(스터디) (17)
      • 기타 (1)
    • Linux (1)
    • 🚀Project🚀 (3)
      • Navigation with detecting p.. (3)
    • 알고리즘 (0)
      • 백준 (0)
    • Git (1)

Tag

openCV, Realtime Object Detection, 허프 변환, YOLO, 파이썬과 케라스로 배우는 강화학습, 딥살사, Nav2, 벨만 최적 방정식, One-stage Detector, YOLOv8, 정책 이터레이션, 시간차 예측, 실시간 객체 검출, DQN 알고리즘, 벨만 방정식, 그리드월드, 1-stage detector, 강화학습, object detection, 벨만 기대 방정식,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2025/07   »
일 월 화 수 목 금 토
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바